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AbsIr~cL Tlw supcrllow of ‘Hc in lhin films on rough surlaces i s  sludied using the 
formalism of micmscopic theory. l l e  gap equation is solved and lhe free energy and 
lhe superflow are calculated for three two-dimensional s~atcs that may exist in films with 
thickness d - &. In the absence at flow thc two-dimensional B stale and the tww 
dimensional A Slatc are dcgcnerate and energetically more favourable than other Two- 
dimensional states. In  lhe presence or flow lhe two-dimensional A s~alc bas tlic l o ~ e s l  
energy. For increasing supemow there O C C U ~  a lransition from the No-dimensional 
A slate to the twodimensional p l a r  slate. me order of this transition dcpends on 
lcmperature and the strength of pair breaking on the sutface. ?he theory is comparcd 
with recent cxpcrimental ICSUILS 

1. Intmduction 

Superfluid ’He in restricted geometries is a subject of great interest. Ewperimcntal 
results point to non-trivial boundary effccts for this system [ 1 4 ] .  It is well known that 
3He, being a p-wave superfluid, is very sensitive to scattering off irregularities of the 
superfluidaolid interface [7]. The  superfluid transition temperature is significantly 
reduced when a t  least one dimension of the system is of the order of the zero- 
temperature coherence length Co. It turns out, however, that coating of the interface 
with up to several layers of 4He  changes the character of quasiparticle scattering from 
diffusive to specular [6]. In experiments [3,4] the addition of ‘He brought the critical 
temperature of the film close to T, for the bulk liquid. Sincc ‘He is prefcrcntially 
adsorbed on the solid surface one is led to the conclusion that even small amounts 
of ‘He adsorbed on the surface (one or more layers) considerably reduccs the pair 
breaking of the surface. One  possible explanation for this effect is that the adsorbed 
atoms of 4He smooth out irregularities of the surface. Nevertheless, it is clear that 
surface roughness on larger length scales remains almost unchanged since no more 
than a few layers of 4He were present in the experiments in [3,4]. This effect remains 
puzzling, although one  might expect that spin relaxation at the boundary in pure 3 H ~  
contributes to the breaking of Cooper pairs, and consequently replacing solidified 
atoms of ’He with ‘He cuts off the spin-scattering channel. 

Thcre have been efforts to study the problem near 7: using the Ginzburg- 
Landau formalism [8-131. The obtained critical current [9] was found to follow a 
( 1  - 7’/TT)3/2 dependence, T: being the critical tcmpcraturc of thc film. Howevcr, 
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the most interesting experiments are currently being performed [Z] beyond the GL 
regime. The quasiclassical method was also used to calculate the order paramcter 
near surfaces 1141, the critical current [15] and the density of states [16,17]. The 
reader may consult any of thesc papers to find more references to the quasiclassical 
studies. 

Here we use an alternative scheme, based on the Abrikosov-Gorkov method. 
Numerical calculations for the case of a thin film present no special dilficulties, if one 
assumes a constant order parameter in the film. This should be a good approximation 
for two-dimensional phases. Our scheme can be used easily in any regular restricted 
geometry. 

As described in 111, there are three length scales of the substrate roughness. 
We use a model of a rough surface that should be appropriate for small uncorrelated 
scattering centres. Since tu - 60 nm, this should be a good approximation for ‘bumps’ 
up to - 50 8, in diameter. The interaction of fermions with surface inhomogcncitics 
is represented as %bite noise’, changing the spectrum of single-particle excitations. 
This random process is called diffusive surface scattering. 

In films with thickness pU-’ << d - E,,, p, ,  being the Fermi momentum of the 
bulk liquid, the likely candidates for the order parameter are the two-dimensional 
Statcs considcrcd by several authors [IS, 191. In  the preceding paper [ZO] wc have 
derived the gap equations, thc free encrgy and the superflow for two-dimensional 
superfluid states in an arbitrary potential well. Hcre we apply this formalism to the 
case of a thin film on a rough substrate. In section 2 we present the model of this 
systcm and in section 3 we solve the gap equations and calculate the free energy for 
each of the states; section 4 contains results for the superflow and its comparison 
with available experimental data. We consider three states: two-dimensional polar, 
two-dimensional B and two-dimensional A states, all thrcc being two-dimensional 
versions of their three-dimensional counterparts. Wc denote them by 2-P, 2-B and 
2-A, rcspcctively. They are introduccd in 1201. The ’2-A state, with A ,  # A,, 
becomes more stable than thc 2-B state when the symmetry in the plane of the film 
is broken by the superflow. The relativc stability of the states 2-P and 2-A depends 
on temperature T ,  the superlluid velocity li and the pair-breaking strength l‘. Since 
we expect the interaction with the substrate to he the dominant factor detcrmining 
the behaviour of the liquid in the thin film, we neglect the Fermi-liquid interaction 
between quasiparticlcs and treat the systcm as a Fermi gas. The pairing intcraction is 
assumed [21] to be the same as in the bulk liquid. We assume h = IC, = 1 throughout 
the calculation. 
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2. The model 

We assume an infinite potcntial square well in the direction perpendicular to the 
surface. The substrate’s roughness is represented by a Gaussian random height 
function u ( z , y )  1211: 

(U(.> Y)) = 0 (1) 

( u ( ~ , ~ J ) u ( z ’ , ~ ‘ ) )  = w’S(Z - z’)S(~J - Y‘). (2) 

The parameter ’U) describes the absolute magnitude of the surface irregularities. The 
interaction with the substrate in this model is a consequence of the boundary condition 
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for the single-particle wavefunction Q ( z , y , d  + u ( z , y ) j  = 0, and \y(z,y,O) = 0. 
For sufficiently small u ( z ,  y) this problem is essentially that of dirty superconductors 
and can be solved in an analogous way. The total number of Fermi circles below the 
chemical potential is uC, the nearest integer less than vu, where w0 = (2md2fi/7r2)'/2. 
More detailed descriptions of the model can he found in [21,22]. For each of the 
Fermi circles we can now write the Abrikosov-Gorkov equations (the spin indices are 
suppressed here): 

G, (io,, , P )  = Gu, (jw, I P )  + Go, (iw,, p ) A , ( r ~ )  d ( i w , ,  p )  

Fl (iw,,, p j  = - Giu (4 , P ) ~ ! , ( P )  G,(iw, , P ) .  

(3) 

(4) 

The superscript '-' denotes time inversion. The Green function in the presence 
of surface scattering and superflow is 

G-' U" - - iw, - P - A, - Zv(iwn) - u p F  (5)  

where 

(6) 
1 v7r 2 

( = - - f i  Y 2  
A, = - (,) 2na 2nz 

Here u is the superfluid velocity, A, is the single-particle spcctrum of states in the 
potential well, p is the momentum in the plane of the film and 11 is the chemical 
potential of the system; pF is givcn in [20]. The self-energy C ,  is due to the scattcring 
at the surface and for each of the Fermi circles is givcn by [21,22] 

where S is the surface area of the film. It is convenient to introduce a function 
U(iw,) and to write the self-energy in the following form: 

cu(iw,)  = -irU(iu,,)cos20u (8) 

where r, being a function of w ,  is a measure of surface roughness: 

The function V(iw,) turns out to be the solution of the following equation: 

where 
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and 

cos+(n,u) = l z v 1 - ' ( - ~ ~  - iAZ(+)sin2e,  + U pFsm o , c o s ~ + ) ,  

The terms cos@, and Cmss, are defined as 

L S Borkowski et ai 

2 2  . 2  

2 

cos 2 0, = (E) 
W S  E = $  E ,  

and 

ijn = w, + TU(iw,)cos20w. 

For each of the phases A2(4) is given bclow. 

3. The gap equntions and the free energy 

Thc order parameter can be written as [20] 

for the 2-A state, and 

A h 3  = f i S i n o , [ ( A , z i ,  - A 2 I j Y b z  + + ~ 1 6 y ) ~ y l i ~ ,  (16) 

A'(+) = AI2 + A: = A' (17) 

for the 2-B state. In thc 2-P state A, = 0 in equations (14) and (15); A, is chosen 
to be the gap in thc direction of thc How. The gap equation for the 2-A state is the 
following: 

(18) 

In the equation above, g and Nu are respectively the superfluid coupling constant 
and the density of states at the Fermi level, and yu is defined in [20]. For A, = 0 
the above equations apply to the 2-P state. The form of the gap equation used in 
numerical calculations is given in the appendix. Examples of solutions of the gap 
equations (18) and (22) at T = 0.3Td, Td being thc critical tcmpcraturc of the film 
with no pair breaking, are shown in figure 1. The tcrms A, and A, are double- 
valued Cunctions of wpF for lower temperatures. At r = 0 this double-valuedness is 
removed above T E 0.518Tcu. The free energy can be found through the integration 
of equation (18) over self-energies A ,  and A2 [20]. In a system with somc form 
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of disorder the equation determining U(iw,), i.e. equation (lo), must be integrated 
together with the gap cquation (18). The free energy FF(A,,A,) of the superfluid 
system with disorder is then expressed as 

A, A, 
@ ( 4 , A 2 ) - &  = /G f l ( A , f , A z , U ( i w , ) ) d A l ' + J o  f2(0 ,A2 ' ,U( iw, ) )d4 '  

Hcrc U ,  denotes U(iw,) in the normal phase: 

and the superscript 'A' stands for 2-A. FN is thc free energy of the normal phasc. The 
functions fl,  f, and f3 are given in the appendix. After performing some algebra we 
arrive, in cquation (21), at the final result for the free energy: 

N :mi 
d 

a". 
> d  

d 
d 
! 

d 
0 

0.0 0.5 1.0 1.5 2.0 
vQr/da 

" 
0.0 0.5 1.0 1.5 2.0 

wrlb 

0.0 0.5 1.0 1.5 2.0 
vrlb 

0.0 0.5 1.0 1.5 2.0 
WIb 

Figure 1. Solutions of the gap equation for the phases 2-A (full cuwc). 2-8 (dolled 
cuwe) and 2-P (broken cuwe) at T = 0.3Tm for several values of the surface scattering 
strength r, (a) 0. ( b )  O.lrc, (c) 0.2Tc and ( d )  0.4r,. The term r, i s  the critical 
scattering strength at T = 0 and upp = 0; A, is the gap at T = 0 and v p ~  = 0. 
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+ &,r C {u( iwn)( iu+ [u(h,) - CJ~I') . (21) 
w,>u 1 

We can now analyze thc relative stability of the different states. For small v p F  the 
2-A state is always more stable than the 2-P state. However, Cor increasing upF there 
is a transition to the 2-P state. This transition is of first or second order, depending 
on temperature and the strength of surface scattering r, sce figure 2. For smooth 
walls, r = 0, the transition is always of second order above T rz 0.518Tc0. For 
larger r, the interval or temperatures for which the first-order transition takes place 
is reduced. The 2-P-state to normal-state transition is always of second order. 

The gap equation Cur thc 2-B btatc k similar to equation (18): 

I 
0.0 0.5 1.0 1.5 2.0 I 

0.0 0.5 1.0 1.5 2.0 
V P d d O  ViIb 

0 
? 

;I_r, I O  '. I 

0 Ou) 
I t  1 0  , 

I to to , 

10 
$ 1  a, 

'0 _ -  
> I  $ 1  

: 2 

dlD 

r 

0.2 0.4 I 0.0 I 
0.0 0.5 1.0 1.5 2.0 

VPF idO Wib 

Figure I The frec energy dilfcrcncr k lwecn  lhe auperlluid slalc and llie normal SLBIC 
far all phases with the Same paramerer rl as in figure 1. lhc curves are denoled as in 
figurc 1. Here energy is scaled with m p e c l  10 Ihe energy diffcrence k l w e e n  the 2-A 
phase and the normal slate a1 zero temperalure and no Row. 
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Here A = d m .  The free energy of the 2-B state is found in the same way 
as in equation (21): 

+ ; U u r  {c i ( iw , )uu+  [ ~ ( i w , , )  -u , ]~}  . (23) 
W , > U  ) 

The superscript ' B  refers to 2-B. For U = 0 thc 2-A and 2-B states are degenerate, 
hut for any U > 0 the 2-A state is more stable although the energy difference between 
these two states is always small. Figure 3 shows details of the phase diagram near the 
first-order transition from the 2-A to the 2-P state. In general, one cannot exclude 
the possibility that the relative stability of states in other theoretical calculations will 
change when additional features, which influence the self-energy, are introduced into 
the model. 

'0.82 0.86 0.90 0.94 
w/dO 

Figure 3. Detail$ of the plinsc diagram near the Onl-order llilnsilion at 7'= 0.37;" and 
r = 0. 

4. The superflow 

The superflow is given by 

where V is the volume of the sample. Using the Green function derived in scction 
2, we arrive at 
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V I 
0 
0.0 0.5 1.0 1.5 2.0 

VP& 

0 
0.0 0.5 1.0 1,5 2.0 

VPrldO 

0 
0.0 0.5 1.0 1 5  2.0 

V P i I b o  
0.2 0.4 0.6 

UP& 

Figure 4 lhc superflow km llic same parameler se1 as in figure 1 and will, llic srlme 
nolalion. 

This equation holds for all three states. lb find the maximum current j, with 
increasing u p F  one  has to solve the gap equations and calculate the free energy. The  
maximum flow is always attained in the 2-A state. However, one must know the 
value of u p ,  at the transition of the 2-A state into the 2-P state, since for a certain 
range of T and r the transition occurs before the current in the 2-A state would 
reach its absolute maximum. R, illustrate this point, we plot in figure 4 the currcnt 
for the same parameter set as in figures 1 and 2 Also, on comparing figures 2 and 
4 we see that, although the largest flow might be achieved in the 2-B state, this state 
is not stable. Figure 5 shows the dcpression of the critical current density j ,  with 
increasing surface roughness. The  dcpcndence of j ,  on temperature is presented in 
figure 6. With the exception of very small tcmpcratures, it follows the (1- T' /7 : )3 /2  
behaviour as is expected when the flow is limited by pair breaking. Comparing the 
magnitude of j ,  from our calculations to experimental results in figure 10 of [l] we 
find a significant difference. Although the phases seen in experiments may not be 
the same as the ones studied here, we think it is Pair to compare at  least orders of 
magnitude of critical currentS for a given critical temperature in order to test the 
mechanism limiting critical currcnts in thin films. The experimental current dcnsity 
is several times smaller than that obtained from equation (25) for a given critical 
temperature of the film. This discrepancy also occurs [l] for j ,  in the GI- theory 
of [9]. Another experimentally rclevant quantity is the superfluid density pr. From 
the critical temperature of the film we can find r and obtain p.. Howcvcr the 
experimental ps is much smaller than in this pair breaking theory. Comparing our 
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result, figure 7, and figure 2 in 121, we see a significant difference. Finally, in ligule 
8 we show the dependence of the superfluid density on r. 

0 U 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
r/r. 1 [mKl 

Figure 5. Czirical current density 3y as a function 
of increasing surface roughness at temperatures 0, 
0.2Ta. 0.4Td and O.6Tc0. 

Figwe 6 Cnlical current density is as a iunclion 
of temperature for several values of pair-breaking 
strength at the surface: 0, 0.2rc, 0.4rc and O.hT,. 
?he film Ihickness was chosen t o  h in lhc range 
measured in [I]. iM 4 $im 

9 
To 
:? ' X  

2 0 

0 

N 

9 
0 9 

0 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.6 1.0 

r , v  r/r, 

Figure 7. Supeduid density against lemperalure. 
Thc temperature is xalcd 10 lhe critical tempera- 
lure in the film. The values of I' are the Same as 
in tigure 6.  

Figure 8. Superfluid density as a lunction of r at  
four temperatures: 0. 0.2Tm, 0.4Td and fl.hTa. 

5. Conclusion 

We h a c  studied the properties of two-dimensional states of superfluid 3 H ~  in films 
on rough surfaces including the effects of superflow. 

We found that thc 2-A and 2-P states a re  always more s tdbk  than thc 2-B state for 
non-zcro superflow. Apart from reducing the critical temperature of the film and the 
superflow, both Idcts already wcll known, surCaa roughncss has an  important c fkc t  
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on the order of the phase transition between the 2-A and the 2-P state. Increasing 
strength of pair breaking at the surface moves the critical point between the first- and 
second-order transition line to lower temperatures. However, the critical point is not 
removed from the phase diagram. With increasing r it approaches T = 0, but docs 
not disappear from the phase diagram until superfluidity is destroyed entircly. 

It becomes apparent that pair breaking alone does not suffice to explain the flow 
experiments in superfluid 3He films. The ncxt logical step towards a satisfying theory 
of this system is the inclusion of more realistic boundary conditions for the supcrfluid- 
normal interface in restricted geometry, pcrhaps along the lines suggested recently 
by two groups of authors [23,24]. The  creation of vortices may also substantially 
reduce critical currents [25]. We have not considered large surface urcgularities, 
which may have a significant effect on j,. The liquid over large bumps on the 
surface may be thinner and those areas may substantially reduce the critical current. 
A related question is the proper description of scattering processes at the supcrfluid- 
solid interface. The addition of a small amount of 4He, the equivalent of only about 
two layers, to supcrfluid 3He films [3,4] was enough to increase T, to almost its bulk 
value. Since the roughness of the liquid-solid boundary was not removed, except 
perhaps for humps o n  the atomic scale, it may seem that the effect of the surface 
in the absence of superflow is mostly to break pairs through spin relaxation a t  the 
walls. So far the spin-flip scattering a t  interfaces of 3He is not well characterized and 
the spin-relaxation times at the boundaries of experimental cells a rc  largely unknown. 
This fact was particularly emphasized by Meyerovich [26] in the context of studies 
of spin-polarized normal 'He. However, in a recent experimental study of the ctfcct 
of 'He at surldccs with roughness on the scale of 20 p\ in normal 'He 1271 thc 
authors suggest that increased specularity of surfaces coated by 4He is not due  to 
the replacement of the localized magnetic layer of 3He. It is likely that momentum 
transfer from the surface to the superlluid 3He is reduced hy the presence of the 'He 
film [27,28], perhaps due  to the superfluidity of the 4He film [27]. 

We can thus conclude that the interpretation of experiments on superflow in 
thin films of 3He is hindered by insulficient knowledge of processes occurring a t  the 
superfluid-solid interface. 
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Appendix. 

Tb solve the gap equation numerically, we transform it into 
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where the temperature and the order parameter are now scaled with respect to their 
magnitudes in a film with no pair breaking, Td) and A,,, respectively. The tcrm A, 
is the gap at T = 0 and IJ = 0. Equations (10)-(12) are then rewritten with the 
following changes: 

(‘42) 
~r 

Tcu A, 
Ljn .+ 1.78a(2n + 1)- + -U(iu,,)cos2Qv 

where 

The integrands J ,  and f 2  in equation (19) are 

x Re{[(&= + i v p , s i n O , , c o ~ d ) ~ +  t A 2 ( ~ ) ~ i n Z 0 u ] - 1 / z } .  (A51 

At f l  = 0 and f, = 0 these two equations are just the gap equations, written in a 
form more convenient for integration. The term J, is given by 

The numerical calculations of j, given by equation (25) are carried out using 
equations (M)-(A4). 
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