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Abstract. The superflow of *He in thin fims on rough surfaces is studied using the
formalism of microscopic theory. The gap equation is solved and the free energy and
the superflow are calculated for three two-dimensional states that may exist in films with
thickness d ~ £g. In the absence of flow the two-dimenstonal B state and the two-
dimensional A state are degenerate and energetically more favourable than other two-
dimensional states. In the presence of flow the two-dimensional A stale has the lowes:
energy. For increasing superflow there occurs a transition from the two-dimensional
A state 10 the two-dimensional polar state. The order of this transition depends on
temperature and the strength of pair breaking on the surface. The theary is compared
with receat cxperimental results.

1. Introduction

Superfluid *He in restricted geometries is a subject of great interest. Experimental
results point to non-trivial boundary effects for this system [1-6]. It is well known that
*He, being a p-wave superfluid, is very sensitive to scattering off irrcgularities of the
superfluid-solid interface [7]. The superfluid transition temperature is significantly
reduced when at lcast one dimension of the system is of the order of the zcro-
temperature cohercnce length £,. It turns out, however, that coating of the interface
with up to several layers of “He changes the character of quasiparticle scattering from
diffusive to specular [6]. In experiments [3, 4] the addition of *He brought the critical
temperature of the film close to T for the bulk liquid. Since ‘He is preferentially
adsorbed on the solid surface one is led to the conclusion thar even small amounts
of *He adsorbed on the surface (one or more layers) considerably reduces the pair
breaking of the surface. One possible cxplanation for this effect is that the adsorbed
atoms of *He smooth out irregularities of the surface. Nevertheless, it is clear that
surface roughness on larger length scales remains almost unchanged since no more
than a few layers of *He were present in the experiments in [3,4]. This effect remains
puzzling, although one might expect that spin relaxation at the boundary in pure ‘He
contributes to the breaking of Cooper pairs, and consequently replacing solidified
atoms of *He with *He cuts off the spin-scattcring channel.

There have been efforts to study the problem near I, using the Ginzburg-
Landau formalism [8-13]. The obtained critical current [9] was found to follow a
(1- TJTFy*? dependence, TF being the critical temperature of the film. However,
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the most interesting cxperiments are currently being performed (2]} beyond the GL
regime. The quasiclassical method was also used to calculate the order parameter
near surfaces [14], the critical current [15] and the density of states [16,17]. The
reader may consult any of thesc papers to find more references to the quasiclassical
studies.

Herc we use an alternative scheme, based on the Abrikosov—Gorkov method.
Numerical calculations for the case of a thin film present no special difficulties, if one
assumcs a constant order parameter in the film. This should be a good approximation
for two-dimensional phases. Our scheme can be used easily in any regular restricted
geometry.

As described in [1], there arc three length scales of the subsirate roughness.
We use a model of a rough surface that should be appropriate for small uncorrelated
scattering centres. Since &, ~ 60 nm, this should be a good approximation for ‘bumps’
up to ~ 50 A in diameter. The interaction of fermions with surfacc inhomogeneitics
is represented as ‘white noise’, changing the spectrum of single-particle excitations.
This random process is called diffusive surface scattering.

In films with thickness p,~! << d ~ &, py being the Fermi momenium of the
bulk liquid, the likcly candidates for the order parameter are the two-dimensional
statcs considered by several authors [18,19). In the preceding paper [20} wc have
derived the gap equations, the free energy and the superflow for two-dimensional
superfluid states in an arbitrary potential well. Hcre we apply this formalism o the
case of a thin film on a rough substrate. In section 2 we present the model of this
system and in section 3 we solve the gap equations and calculate the free cnergy for
each of the states; section 4 contains results for the superflow and its comparison
with available experimental data. We consider three states: two-dimensional polar,
two-dimensional B and two-dimensional A states, all threc being two-dimensional
versions of their three-dimensional counterparts. We denote them by 2-F, 2-B and
2-A, respectively. They are introduced in [20]. The 2-A state, with A, # A,
becomes more stable than the 2-B state when the symmetry in the plane of the film
is broken by the superflow. The relative stability of the states 2-P and 2-A depends
on temperature T, the superfluid welocity v and the pair-breaking strength T'. Since
we expect the interaction with the substrate to be the dominant factor detcrmining
the behaviour of the liquid in the thin film, we neglect the Fermi-liquid interaction
between quasiparticles and treat the system as a Fermi gas. The pairing interaction is
assumcd [21] to be the same as in the bulk liquid. We assume i = &y = 1 throughout
the calculation.

2. The model

We assume an infinite potential square well in the direction perpendicular to the
surface. The substrate’s roughness is represented by a Gaussian random height
function u(z,y) [21]:

(u(w,y)) =0 Y]
(u(z, y)u(z', y")) = wié(z — 2)6(y - ¢'). (2)

The parameter w describes the absolute magnitude of the surface irregularities. The
interaction with the substrate in this model is a consequence of the boundary condition
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for the single-particle wavefunction W{z,y,d + u{z,y)) = 0, and ¥(z,y,0) = 0.
For sufficiently small u(xz,y) this problem is essentially that of dirty superconductors
and can be solved in an analogous way. The total number of Fermi circles below the
chemical potential is v,, the nearest integer less than v, where vy = (2md?u/=*)V2.
More detailed descriptions of the model can be found in [21,22]. For each of the
Fermi circles we can now write the Abrikosov-Gorkov equations (the spin indices are
suppressed here}):

G, (iwn>P) = Gy, (iwy, P) + Gy, (i, P) A, (p) F) (i0,, . p) 3)
Fl(iw,,p) = -Gy, (iw,, p)AL(P)G, (iw, , p).- @)

The superscript ‘" denotes time inversion. The Green function in the presence
of surface scattering and superflow is

Gyl =iw, =&, - A, - T, (iw,) — vpg (5)
where
2
s _ _1_ vy
& = 2m H Ay = 2m (T) ’ )

Here v is the superfluid velocity, A, is the single-particle spectrum of states in the
potential well, p is the momentum in the plane of the film and u is the chemical
potential of the system; pg is given in [20]. The self-energy X, is due to the scattering
at the surface and for each of the Fermi circles is given by [21, 22]

, w? fem\P1 s\’ .
Bt = 55 () 52 (°F) Glionrr) @

p.v’

where S 15 the surface area of the film. It is convenient to introduce a function
U(iw, ) and to write the self-energy in the following form:

T, (iw,) = —ilU(iw, ) cos* 4, (8)
where I, being a function of w, is a measure of surface roughness:

4 2

7w
= S T ®
The function I/(iw,) turns out to be the solution of the following equation:
T/2 d
Uliw,) = Y cos? ouf —¢|z,,]°1/2an sin 1gp(n,v)
cos &, -%/z T
+ sign{co,, yupgsin &, cos ¢ cos $p(n, v) (10)

where
2| =[(DF + 2A2(#)sin? 0, — vipksin? 0, cos? )2 + 4v?pi&? sin® 0, cos? )72
7 n Z v F v F“'n v

)
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and

cos ¢{n,v) = |z,| N (~&E ~ 2A%(¢)sin’ 0, + vPpfsin® 0, cos? ). (12)
The terms cos 6, and 3, are defined as

v z 1
wio = (X)) T =g%

cos 0,

and
@, =w, + 'U(iw, ) cos?0,,. (13)

For each of the phases A%(¢) is given below,

3. The gap equations and the free energy

The order parameter can be written as {20]

A,(B) = 3]2sin0,(Ap, +i0,8,)a,ic, (14)
and
A%¢) = A2cos? ¢+ A, sin ¢ (15)

for the 2-A state, and

AL(B) = V3/2sin0,[(AP, — Dsby)o, + (D26, + ABy)olioy (16)
Ay =a"+4,"=4% (17

for the 2-B state. In the 2-P state A; = 0 in equations (14) and (15); A, is chosen
to be the gap in the direction of the flow. The gap equation for the 2-A state is the
following:

A LEE| _
{A;}: {/_\. }6gNu—T Z sin 0 / ¢{:ﬁf q‘)}f " Y2in %-;zﬁ(n,.v).

Vg >0 -%/2 T

(18)

In the equation above, g and N, are respectively the superfluid coupling constant
and the density of states at the Fermi fevel, and py is defined in [20] For A; =0
the above equations apply to the 2-P state. The form of the gap cquation uscd in
numerical calculations i given in the appendix. Examples of solutions of the gap
equations (18) and (22) at T = 0.3T, T, being the critical tempcrature of the film
with no pair breaking, are shown in figure 1. The terms A; and A, are double-
vajued functions of vpg for lower temperatures. At ' = O this double-valuedness is
removed above T ~ 0.5187,,. The free energy can be found through the integration
of equation (18) over self-cnergies A, and A, [20]. In a system with somc form



Superfluid *He flow on rough surfaces 9549
of disorder the equation determining U(iw, ), i.e. equation (10), must be integrated
together with the gap equation (18). The free encrgy F{ (A4, A,) of the superfluid
system with disorder is then expressed as

&y

Ay
FAALA) - F= | fi(A), Ay, Uliw,))dA, + fu 1200, Ay Ulio, ))d,’

Uliwn)
+ Z/ £3(0,0,U,Hau, ", (19)
n Uo
Here U, denotes U(iw,, ) in the normal phase:
) 1 vive+ 1/ 2.+ 1
Uy = U(iw,)|a,=a,=0 = U_UZcoszavz (Ve 3{/ 2( 1 (20)
” 0

and the superscript ‘A’ stands for 2-A. Fy is the free energy of the normal phase. The
functions f;, f, and f, arc given in the appendix. After performing some algebra we
arrive, in cquation (21), at the final result for the free energy:

N o
0 Q ()
b Q ~
[»] (o] ~
do do N
P 39 N
¢ ¥ \
o o \
o o
o [} {
) © . Al
Q [}
0.0 0.5 1.0 15 20
vpr/ b
o o
o o | (d)
a ol
o 3 o
a
av ol
39 3¢
< 1
o oL
o [‘{. | "._\
] o "N
c Q i L L
o ]
0.0 0.5 1.0 1.9 20 0.0 0.5 10 1.5 20
vpr/ to vpr/to

Figure 1. Solutions of the gap equation for the phases 2-A (full curve), 2-B (dotted
curve) and 2-P (broken curve) at T = 0.3T¢9 for several values of the surface scattering
strength T, (a) 0, (b) 0.1, (¢} 0.2Tc and (d) 0.4T¢. The term I'; is the critical
scaltering strength at T =0 and vpp = 0; Ag is the gap at T =0 and vpr =0
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2 w/2
FA(A,A)-Fy = 3gNu“—dT( sin’ 01,] 41z, 17202 ) sin Lo(n, v)
Py Vim0 /2 (L
/2
4 d .
-3 Y [ Rhsinletn)

V. >U_7r/2

+ 4T S {U(iw, ) Uy + [U(iw,,) - UUP})‘ @1
Wl
We can now analyze the relative stability of the different states. For small vpg the
2-A state is always more stable than the 2-P state. However, for increasing vpp there
is a transition to the 2-P state. This transition is of first or second order, depending
on temperature and the strength of surface scattering T, sce figure 2. For smooth
walls, ' = 0, the transition is always of second order above T ~ (.5187,. For
larger T, the interval of temperatures for which the first-order transition takes place
is reduced. The 2-P-state to normal-state transition is always of second order.
The pap equation for the 2-B state is similar to equation (13):

2 5 ™2 d4¢
A =3AgN,—T D sin ouf —|z,{"Y%sin Lop(n,v). (22)
Py Vown >0 -7z il
Q 0
o] Q /,"
i -
I+ i
o] ol
E_,. | :.:, 1
Qo g0
<1 <
b
. .
IO.D 0.5 1.0 1.5 2.0 0.0 0.5 10 1.5 2.0
vpr/ha vpr/to
Q
[} 5]
[+ - g
= 8
il é
1+ 16
Co T £
Yo b N
5! 3
© (¢ e
o 1 ] L g 1 L
!
0.0 05 19 1.5 2.0 10.0 0.2 04
vpr/ho vpr/ b

Figure 2. The [ree cnergy diffcrence between the superfluid state and lhe normal state
for all phases with the same parameter set as in figure 1. The curves are denoled as in
figure 1. Here energy is scaled with respect to the energy difference between the 2-A
phase and the normal state at zero temperature and no flow.
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Here A = /A * + A,% The free energy of the 2-B state is found in the same way
as in equation (21):

FB(A)—FN_SQNU—T( 3" sin’ g ] ¢A2|zvl_1/281n]¢(n v)
Kis

vywa >0 _”/2
1r/2
- Z / —|z /2 sin 1g(n, v)
uwh>0 -x/2
+ 40 3 (UG ) U + [U i) —Uolz}). 23)
wyp >0

The superscript ‘B’ refers to 2-B. For v+ = 0 the 2-A and 2-B states are degenerate,
but for any v > O the 2-A state is more stable although the energy difference between
these two states is always small. Figure 3 shows details of the phase diagram near the
first-order transition from the 2-A to the 2-P state. In general, one cannot exclude
the possibility that the relative stability of states in other theoretical calculations will
change when additional features, which influence the self-energy, are introduced into
the model.

=0)
—0.30 —0.26

AFg/AFS*(T=0,v

—0.34

(=}
[=+]
=]

0.86 0.90 0.94
vpr/to

Figure 3. Details of the phasc diagram near the first-order transition at 7' = (.37 and
I'=0

4. The superflow

The superflow is given by
1 d’p p+ mo )
= —*T Zu/(T——“—”—‘—GV(Iwn,p) (24)

where V is the volume of the sample. Using the Green function derived in section
2, we arrive at

541/6 /1 g
fo= BTN b S i, [ S s
(pod 3, sin“ 0, )1/2 v,wn >0 -v/2 7

x (vppsin 0, cos @sin 2g(n,v) — &, 08 $é(n,v)). (25)
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Figure 4 The superflow for the same parameter set as in figure 1 and with the same
notalion.

This equation holds for all threc states. To find the maximum current j, with
increasing vpgp one has to solve the gap equations and calculate the free encrgy. The
maximum {low is always attained in the 2-A state. However, one must know the
value of vpg at the transition of the 2-A state into the 2-P state, since for a certain
range of T and I' the transition occurs before the current in the 2-A statc would
reach its absolute maximum. T illustrate this point, we plot in figure 4 the current
for the same parameter sct as in figures 1 and 2. Also, on comparing figures 2 and
4 we see that, although the largest flow might be achieved in the 2-B state, this state
is not stable. Figure 5 shows the dcpression of the critical current density j,. with
increasing surface roughness. The dependence of 7. on temperature is presented in
figurc 6. With the exception of very small temperatures, it follows the (1— 7'/7.F)3/2
behaviour as is expected when the flow is limited by pair breaking. Comparing the
magnitude of j from our calculations to experimental results in figure 10 of [1] we
find a significant difference. Although the phases seen in experiments may not be
the same as the ones studicd here, we think it is fair to compare at least orders of
magnitude of critical currents for a given critical temperature in order to test the
mechanism limiting critical currents in thin films. The experimental current density
I8 several times smaller than that obtained from cquation (25) for a4 given critical
temperature of the film. This discrepancy also occurs [1} for jg in the GL theory
of [9]. Another experimentally relevant quantity is the superfluid density p.. From
the critical temperature of the film we can find I' and obtain p,. Howcever the
experimental p_ is much smaller than in this pair breaking thcory. Comparing our
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result, figurc 7, and figure 2 in [2], we see a significant difference. Finally, in figure
8 we show the dependence of the superiluid density on I,

Jac/ Daa?’3
0.00 0.08 0.16 0.24 0.32

=
<

U2 D4 DB DB 1D
/T

Figure 5. Critical current density jsc as a funciion
of increasing surface roughness at temperatures {},
0.2Tp, 0.4Ty and 0.6T,.

1.0

Pa/B

0.0 0.2 0.4 0.6 0.8

v 02 04 D& 0B 1D
T/TF

Figure 7. Superfluid density against temperature.
The temperature is scaled to the critical tempera-
ture in the film. The values of I" are the same as
in figure 6.

5. Conclusion

(ine/@)?/> [mm/zec]?/3
0.0 2.0 4.0 6.0 B.G 10.0

v

00 ©2 04 0B DB WD
T [mK]

Figure 6 Crtical current density jsc as a function
of temperature for several values of pair-breaking
strength at the surface: 0, 0.2T¢, 0.4T ¢ and 0.6 .
The film thickness was chosen Lo be in the range
measured in [1].

1.0

Pa/p

0.0 ©.2 c.4 0.6 0.8

00 02 04 06 0B 10
I/l

Figure 8. Superfluid density as a function of T" at
four temperatures: 0, 0.27Ty, 04Ty and 0.6T.

We have studied the properties of two-dimensional states of superfluid *He in films
on rough surfaces including the effects of superflow.

We found that the 2-A and 2-P states are always more stable than the 2-B state for
non-zero superflow, Apart from reducing the critical temperature of the film and the
superflow, both facts already well known, surface roughness has an imporant effcet
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on the order of the phase transition between the 2-A and the 2-P state. Increasing
strength of pair breaking at the surface moves the critical point between the first- and
second-order transition line to lower temperatures. However, the critical point is not
removed from the phase diagram. With increasing I' it approaches T = 0, but docs
not disappear from the phase diagram until superfluidity is destroyed entirely.

It becomes apparent that pair breaking alone does not suffice to explain the flow
experiments in superfluid *He films. The next logical step towards a satisfying theory
of this system is the inclusion of more realistic boundary conditions for the superfiuid—
normal interface in restricted geometry, perhaps along the lines suggested recently
by two groups of authors {23,24]. The creation of vortices may also substantially
reduce critical currcnts [25]. We have not considered large surface irregularitics,
which may have a significant cffect on j,. The liquid over large bumps on the
surface may be thinner and those areas may substantially reduce the critical current.
A related question is the proper description of scattering processes at the superfluid-
solid interface. The addition of a small amount of “He, the equivalent of only about
two layers, to supcrfiuid He films (3, 4] was enough to increasc T, to almost its bulk
value. Since the roughness of the liquid-solid boundary was not remaved, except
perhaps for bumps on the atomic scale, it may seem that the effect of the surface
in the absence of superflow is mostly to break pairs through spin relaxation at the
walls. So far the spin-flip scattering at interfaces of *He is not well characterized and
the spin-relaxation times at the boundaries of experimental cclls are largely unknown.
This fact was particularly emphasized by Meyerovich [26] in the context of studies
of spin-polarized normal *He. However, in a recent experimental study of the cffect
of “He at surfaces with roughness on the scale of 20 A in normal *He [27] the
authors suggest that incrcased specularity of surfaces coated by “He is not due to
the replacement of the localized magnetic layer of *He. Tv is likely that momentum
transfer from the surface to the superfluid *He is reduced by the presence of the *He
film [27,28), perhaps due to the superfluidity of the *He film [27].

We can thus conclude that the interpretation of experiments on superflow in
thin films of *He is hindered by insuflicient knowledge of processes occurring at the
superfluid-solid interface.
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Appendix.

T solve the gap equation numerically, we transform it into

w/2
d¢ [cos?
ln(l) =712¢ T Z sin’ 8, [ ﬁ{ qe’}l i"/zsm'qﬁ(n v)
Ty TUZ sin” @, et 4, © |sin® ¢

]
ey (A1
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where the temperature and the order parameter are now scaled with respect to their
magnitudes in a film with no pair breaking, 7, and A, respectively. The term A
is the gap at T = 0 and v = 0. Equations (10)—(12) are then rewritten with the
following changes:

. T r

n— 1L78a(2n + 1)— + —U{i Zg A2
w a(2Zn )ch A, (ko, ) cos® 6, (A2)
AY(g) — AM9) /8, vpE — vpp/dy (A3)

where

a=ep{{nsind_}) (Insin0,}

-1
(Z sin’ 9,,) > sin® 0, Insin 0, (Ad)
i i

The integrands f; and f, in equation (19) are

fi{8:4,, U(iw ))} _{Aq} L .2 /"/2 de¢ Alcoszqﬁ}
“n )t = — 69N, T 9 dé
{IZ(Alaéze U(lwn)) AZ g Upud V‘§>‘)Sln v —x)2 T {Azsinz ¢)

x Re{[(@, + ivpgsin 0, cos ¢)? + 1A2(¢)sin’0,]77/%). (AS)

At fi =0 and f, = O these two equations are just the gap cquations, written in a
form more convenient for integration. The term f; is given by

®/2
. w2 do
£(81,8,,U(iw,)) = 6g N, Ty, T — [U(iwn) - ) cos0, f —
pyd = ’_”2 ki
y Rc( w, +ivppsin 0, cos ¢ i )] (A6)
[(©, + ivppsind, cos )2 + 2AZ(¢)sin"0,]1/2

The numerical calculations of j; given by cquation (25) arc carried out wsing
equations (A2)-(A4).
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